HyperAIHyperAI

Command Palette

Search for a command to run...

Improving Person Re-identification by Attribute and Identity Learning

Yutian Lin Liang Zheng Zhedong Zheng Yu Wu Zhilan Hu Chenggang Yan Yi Yang

Abstract

Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp