HyperAIHyperAI

Command Palette

Search for a command to run...

SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation

Li Yi Hao Su Xingwen Guo Leonidas Guibas

Abstract

In this paper, we study the problem of semantic annotation on 3D models that are represented as shape graphs. A functional view is taken to represent localized information on graphs, so that annotations such as part segment or keypoint are nothing but 0-1 indicator vertex functions. Compared with images that are 2D grids, shape graphs are irregular and non-isomorphic data structures. To enable the prediction of vertex functions on them by convolutional neural networks, we resort to spectral CNN method that enables weight sharing by parameterizing kernels in the spectral domain spanned by graph laplacian eigenbases. Under this setting, our network, named SyncSpecCNN, strive to overcome two key challenges: how to share coefficients and conduct multi-scale analysis in different parts of the graph for a single shape, and how to share information across related but different shapes that may be represented by very different graphs. Towards these goals, we introduce a spectral parameterization of dilated convolutional kernels and a spectral transformer network. Experimentally we tested our SyncSpecCNN on various tasks, including 3D shape part segmentation and 3D keypoint prediction. State-of-the-art performance has been achieved on all benchmark datasets.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp