HyperAIHyperAI

Command Palette

Search for a command to run...

Real-time Action Recognition with Enhanced Motion Vector CNNs

Bowen Zhang; Limin Wang; Zhe Wang; Yu Qiao; Hanli Wang

Abstract

The deep two-stream architecture exhibited excellent performance on video based action recognition. The most computationally expensive step in this approach comes from the calculation of optical flow which prevents it to be real-time. This paper accelerates this architecture by replacing optical flow with motion vector which can be obtained directly from compressed videos without extra calculation. However, motion vector lacks fine structures, and contains noisy and inaccurate motion patterns, leading to the evident degradation of recognition performance. Our key insight for relieving this problem is that optical flow and motion vector are inherent correlated. Transferring the knowledge learned with optical flow CNN to motion vector CNN can significantly boost the performance of the latter. Specifically, we introduce three strategies for this, initialization transfer, supervision transfer and their combination. Experimental results show that our method achieves comparable recognition performance to the state-of-the-art, while our method can process 390.7 frames per second, which is 27 times faster than the original two-stream method.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Real-time Action Recognition with Enhanced Motion Vector CNNs | Papers | HyperAI