HyperAIHyperAI

Command Palette

Search for a command to run...

An Analysis of Unsupervised Pre-training in Light of Recent Advances

Tom Le Paine* Pooya Khorrami* Wei Han Thomas S. Huang

Abstract

Convolutional neural networks perform well on object recognition because of a number of recent advances: rectified linear units (ReLUs), data augmentation, dropout, and large labelled datasets. Unsupervised data has been proposed as another way to improve performance. Unfortunately, unsupervised pre-training is not used by state-of-the-art methods leading to the following question: Is unsupervised pre-training still useful given recent advances? If so, when? We answer this in three parts: we 1) develop an unsupervised method that incorporates ReLUs and recent unsupervised regularization techniques, 2) analyze the benefits of unsupervised pre-training compared to data augmentation and dropout on CIFAR-10 while varying the ratio of unsupervised to supervised samples, 3) verify our findings on STL-10. We discover unsupervised pre-training, as expected, helps when the ratio of unsupervised to supervised samples is high, and surprisingly, hurts when the ratio is low. We also use unsupervised pre-training with additional color augmentation to achieve near state-of-the-art performance on STL-10.


Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing

HyperAI Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
An Analysis of Unsupervised Pre-training in Light of Recent Advances | Papers | HyperAI