HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Weakly Supervised Semantic Segmentation
Weakly Supervised Semantic Segmentation On
Weakly Supervised Semantic Segmentation On
Metriken
Mean IoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean IoU
Paper Title
Repository
SIPE (DeepLabV2-ResNet101, no saliency)
68.8
Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segmentation
PMM(ResNet38)
68.5
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
LIID (ResNet-101)
66.5
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation
URN(ResNet-38, no saliency, no RW)
69.4
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
LIID (Res2Net-101)
69.4
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation
AMN (DeepLabV2-ResNet101)
69.5
Threshold Matters in WSSS: Manipulating the Activation for the Robust and Accurate Segmentation Model Against Thresholds
URN(ScaleNet-101, no saliency, no RW)
70.1
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
SEAM+CONTA
66.1
Causal Intervention for Weakly-Supervised Semantic Segmentation
ISIM (ResNet-101)
70.51
ISIM: Iterative Self-Improved Model for Weakly Supervised Segmentation
LIID (ResNet-101, +24K SI)
67.8
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation
WeakTr (DeiT-S, multi-stage)
74.0
WeakTr: Exploring Plain Vision Transformer for Weakly-supervised Semantic Segmentation
ResNet-101
66.2
Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation
SGAN
67.1
Saliency Guided Self-attention Network for Weakly and Semi-supervised Semantic Segmentation
ACR-WSSS(DeepLabV1-ResNet101)
71.2
All-pairs Consistency Learning for Weakly Supervised Semantic Segmentation
Infer-CAM(DeepLabV2-ResNet101)
70.8
Inferring the Class Conditional Response Map for Weakly Supervised Semantic Segmentation
PMM(ResNet38, no saliency, no RW)
68.5
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
SemPLeS (Swin-L)
83.4
Semantic Prompt Learning for Weakly-Supervised Semantic Segmentation
VWL-L
70.6
Weakly-Supervised Semantic Segmentation with Visual Words Learning and Hybrid Pooling
PMM(Res2Net101, no saliency, no RW)
70.0
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation
OC-CSE(ResNet38,no saliency)
68.4
Unlocking the Potential of Ordinary Classifier: Class-Specific Adversarial Erasing Framework for Weakly Supervised Semantic Segmentation
0 of 73 row(s) selected.
Previous
Next