HyperAI

Video Quality Assessment On Msu Sr Qa Dataset

Metriken

KLCC
PLCC
SROCC
Type

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameKLCCPLCCSROCCType
Modell 10.163650.201380.21450FR
exploring-clip-for-assessing-the-look-and0.697740.718080.56875NR
musiq-multi-scale-image-quality-transformer0.518970.591510.64589NR
fsim-a-feature-similarity-index-for-image0.269420.350830.34996FR
Modell 50.120670.094280.16441FR
pieapp-perceptual-image-error-assessment0.619450.757430.75215FR
norm-in-norm-loss-with-faster-convergence-and0.521720.622040.64382NR
multiscale-structural-similarity-for-image0.078210.160350.11017FR
topiq-a-top-down-approach-from-semantics-to0.406630.510610.51687NR
blind-image-quality-assessment-using-a-deep0.551390.639710.68621NR
q-align-teaching-lmms-for-visual-scoring-via0.616770.741160.75088NR
the-unreasonable-effectiveness-of-deep0.431580.523850.54461FR
Modell 130.099980.138400.12914FR
topiq-a-top-down-approach-from-semantics-to0.428110.575640.55568FR
the-unreasonable-effectiveness-of-deep0.414710.528200.52868FR
erqa-edge-restoration-quality-assessment-for0.477850.601880.59345FR
Modell 170.476740.623110.60468FR
Modell 180.322830.400730.43219FR
image-quality-assessment-unifying-structure0.423200.550420.53346FR
q-align-teaching-lmms-for-visual-scoring-via0.422110.500550.51521NR
Modell 210.340040.418920.44064NR
blindly-assess-image-quality-in-the-wild0.484660.552110.59883NR
Modell 230.323310.397440.43296FR
Modell 240.135510.196720.17889FR
unified-quality-assessment-of-in-the-wild0.484060.618210.60193NR
quality-assessment-of-in-the-wild-videos0.436340.544070.53652NR
musiq-multi-scale-image-quality-transformer0.446690.524040.56152NR
Modell 280.242540.331690.33167NR
musiq-multi-scale-image-quality-transformer0.526730.602160.64927NR
multiscale-structural-similarity-for-image0.181740.218000.24422FR
topiq-a-top-down-approach-from-semantics-to0.531400.609050.64923NR
exploring-clip-for-assessing-the-look-and0.387940.503790.49881NR
no-reference-image-quality-assessment-via-10.393980.500050.48882NR
topiq-a-top-down-approach-from-semantics-to0.284730.340000.36204NR
topiq-a-top-down-approach-from-semantics-to0.484280.589490.59564NR
multiscale-structural-similarity-for-image0.165780.300140.21604FR
the-2018-pirm-challenge-on-perceptual-image0.391010.531780.52319NR
musiq-multi-scale-image-quality-transformer0.553120.665310.67746NR
from-patches-to-pictures-paq-2-piq-mapping0.577530.709880.71167NR
vila-learning-image-aesthetics-from-user0.261800.288460.33728NR
exploring-clip-for-assessing-the-look-and0.494170.589440.60808NR
no-reference-image-quality-assessment-via-10.490040.562260.62578NR
no-reference-image-quality-assessment-in-the0.248030.311430.32327NR
image-quality-assessment-from-error0.171750.206700.22468FR
Modell 450.082630.109310.10733FR
topiq-a-top-down-approach-from-semantics-to0.462170.579550.57341FR
maniqa-multi-dimension-attention-network-for0.547440.627330.66613NR
exploring-clip-for-assessing-the-look-and0.526280.651540.65713NR
Modell 490.110400.146380.14277FR
Modell 500.264850.369440.34862FR
topiq-a-top-down-approach-from-semantics-to0.506700.576740.62715NR
multiscale-structural-similarity-for-image0.174680.209350.23108FR
shift-tolerant-perceptual-similarity-metric-10.428970.547400.53473FR
learning-a-no-reference-quality-metric-for0.523010.653570.67362NR
q-align-teaching-lmms-for-visual-scoring-via0.586340.711210.71812NR
shift-tolerant-perceptual-similarity-metric-10.458980.564310.57336FR
nima-neural-image-assessment0.203770.265500.25887NR
no-reference-image-quality-assessment-via-10.489010.562770.62496NR
topiq-a-top-down-approach-from-semantics-to0.267740.339400.34092NR
locally-adaptive-structure-and-texture0.412610.532890.51717FR