HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Videoqualitätseinschätzung
Video Quality Assessment On Msu Sr Qa Dataset
Video Quality Assessment On Msu Sr Qa Dataset
Metriken
KLCC
PLCC
SROCC
Type
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
KLCC
PLCC
SROCC
Type
Paper Title
ClipIQA+
0.69774
0.71808
0.56875
NR
Exploring CLIP for Assessing the Look and Feel of Images
PieAPP
0.61945
0.75743
0.75215
FR
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Q-Align (IQA)
0.61677
0.74116
0.75088
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
Q-Align (VQA)
0.58634
0.71121
0.71812
NR
Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined Levels
PaQ-2-PiQ
0.57753
0.70988
0.71167
NR
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
MUSIQ trained on PaQ-2-PiQ
0.55312
0.66531
0.67746
NR
MUSIQ: Multi-scale Image Quality Transformer
DBCNN
0.55139
0.63971
0.68621
NR
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
MANIQA
0.54744
0.62733
0.66613
NR
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
TOPIQ trained on SPAQ (NR)
0.53140
0.60905
0.64923
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
MUSIQ trained on SPAQ
0.52673
0.60216
0.64927
NR
MUSIQ: Multi-scale Image Quality Transformer
ClipIQA+ ResNet50
0.52628
0.65154
0.65713
NR
Exploring CLIP for Assessing the Look and Feel of Images
Ma-Metric
0.52301
0.65357
0.67362
NR
Learning a No-Reference Quality Metric for Single-Image Super-Resolution
Linearity (Norm-in-Norm Loss)
0.52172
0.62204
0.64382
NR
Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
MUSIQ trained on KONIQ
0.51897
0.59151
0.64589
NR
MUSIQ: Multi-scale Image Quality Transformer
TOPIQ
0.50670
0.57674
0.62715
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
ClipIQA
0.49417
0.58944
0.60808
NR
Exploring CLIP for Assessing the Look and Feel of Images
TReS trained on KONIQ
0.49004
0.56226
0.62578
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
TReS
0.48901
0.56277
0.62496
NR
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency
HyperIQA
0.48466
0.55211
0.59883
NR
Blindly Assess Image Quality in the Wild Guided by a Self-Adaptive Hyper Network
TOPIQ FACE
0.48428
0.58949
0.59564
NR
TOPIQ: A Top-down Approach from Semantics to Distortions for Image Quality Assessment
0 of 60 row(s) selected.
Previous
Next
Video Quality Assessment On Msu Sr Qa Dataset | SOTA | HyperAI