HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Videoqualitätseinschätzung
Video Quality Assessment On Konvid 1K
Video Quality Assessment On Konvid 1K
Metriken
PLCC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
PLCC
Paper Title
Repository
VIDEVAL
0.7803
UGC-VQA: Benchmarking Blind Video Quality Assessment for User Generated Content
-
RAPIQUE
0.8175
RAPIQUE: Rapid and Accurate Video Quality Prediction of User Generated Content
-
FAST-VQA (trained on LSVQ only)
0.855
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
2BiVQA
0.835
2BiVQA: Double Bi-LSTM based Video Quality Assessment of UGC Videos
-
ReLaX-VQA (trained on LSVQ only)
0.8427
ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment
-
ChipQA
0.7625
ChipQA: No-Reference Video Quality Prediction via Space-Time Chips
-
FasterVQA (fine-tuned)
0.898
Neighbourhood Representative Sampling for Efficient End-to-end Video Quality Assessment
-
HVS-5M
0.8562
HVS Revisited: A Comprehensive Video Quality Assessment Framework
-
SimpleVQA
0.860
A Deep Learning based No-reference Quality Assessment Model for UGC Videos
-
DisCoVQA
0.860
DisCoVQA: Temporal Distortion-Content Transformers for Video Quality Assessment
-
CONTRIQUE
0.842
Image Quality Assessment using Contrastive Learning
-
DOVER (end-to-end)
0.905
Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives
-
VSFA
0.7754
Quality Assessment of In-the-Wild Videos
-
FAST-VQA (finetuned on KonViD-1k)
0.892
FAST-VQA: Efficient End-to-end Video Quality Assessment with Fragment Sampling
-
CONVIQT
0.849
CONVIQT: Contrastive Video Quality Estimator
-
ReLaX-VQA
0.8473
ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment
-
DOVER (head-only)
0.894
Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives
-
TLVQM
0.7688
Two-Level Approach for No-Reference Consumer Video Quality Assessment
ReLaX-VQA (finetuned on KoNViD-1k)
0.8668
ReLaX-VQA: Residual Fragment and Layer Stack Extraction for Enhancing Video Quality Assessment
-
PVQ
0.770
Patch-VQ: 'Patching Up' the Video Quality Problem
-
0 of 21 row(s) selected.
Previous
Next
Video Quality Assessment On Konvid 1K | SOTA | HyperAI