HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Trainingsfreie 3D-Punktewolke-Klassifikation
Training Free 3D Point Cloud Classification 1
Training Free 3D Point Cloud Classification 1
Metriken
Accuracy (%)
Need 3D Data?
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy (%)
Need 3D Data?
Paper Title
Point-GN
86.4
Yes
Point-GN: A Non-Parametric Network Using Gaussian Positional Encoding for Point Cloud Classification
Point-NN
64.9
Yes
Parameter is Not All You Need: Starting from Non-Parametric Networks for 3D Point Cloud Analysis
PointCLIP V2
35.4
No
PointCLIP V2: Prompting CLIP and GPT for Powerful 3D Open-world Learning
CLIP2Point
23.2
Yes
CLIP2Point: Transfer CLIP to Point Cloud Classification with Image-Depth Pre-training
CALIP
16.9
No
CALIP: Zero-Shot Enhancement of CLIP with Parameter-free Attention
PointCLIP
15.4
No
PointCLIP: Point Cloud Understanding by CLIP
0 of 6 row(s) selected.
Previous
Next