HyperAI

Thermal Image Segmentation On Rgb T Glass

Metriken

MAE

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameMAE
hierarchical-dynamic-filtering-network-for0.048
rgb-d-salient-object-detection-with0.052
shapeconv-shape-aware-convolutional-layer-for0.054
select-supplement-and-focus-for-rgb-d0.097
enhanced-boundary-learning-for-glass-like0.104
glass-segmentation-with-rgb-thermal-image0.024
uc-net-uncertainty-inspired-rgb-d-saliency0.071
cmx-cross-modal-fusion-for-rgb-x-semantic0.029
visual-saliency-transformer0.044
segformer-simple-and-efficient-design-for0.053
asymmetric-two-stream-architecture-for0.098
learning-generative-vision-transformer-with-10.040
specificity-preserving-rgb-d-saliency0.041
depth-potentiality-aware-gated-attention0.154
calibrated-rgb-d-salient-object-detection0.056
efficient-rgb-d-semantic-segmentation-for0.040
rgb-d-saliency-detection-via-cascaded-mutual0.041
rtfnet-rgb-thermal-fusion-network-for0.058
a-single-stream-network-for-robust-and-real0.069
accurate-rgb-d-salient-object-detection-via0.145
rgb-d-salient-object-detection-via-3d0.045
segmenter-transformer-for-semantic0.072