HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Synthetisch-zu-realem Translation
Synthetic To Real Translation On Gtav To
Synthetic To Real Translation On Gtav To
Metriken
mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIoU
Paper Title
DCF
77.7
Transferring to Real-World Layouts: A Depth-aware Framework for Scene Adaptation
HRDA+MIC
75.9
MIC: Masked Image Consistency for Context-Enhanced Domain Adaptation
HRDA+PiPa
75.6
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
HRDA + CLUDA
74.4
CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for Semantic Segmentation
HRDA
73.8
HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
DAFormer+PiPa
71.7
PiPa: Pixel- and Patch-wise Self-supervised Learning for Domain Adaptative Semantic Segmentation
SePiCo
70.3
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
DAFormer + CLUDA
70.11
CLUDA : Contrastive Learning in Unsupervised Domain Adaptation for Semantic Segmentation
CAMix (w DAFormer)
70.0
Context-Aware Mixup for Domain Adaptive Semantic Segmentation
DAFormer + ProCST
69.4
ProCST: Boosting Semantic Segmentation Using Progressive Cyclic Style-Transfer
DAFormer
68.3
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation
TransDA-B
63.9
Smoothing Matters: Momentum Transformer for Domain Adaptive Semantic Segmentation
DDB
62.7
Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation
EHTDI*
62.0
Exploring High-quality Target Domain Information for Unsupervised Domain Adaptive Semantic Segmentation
BiSMAP
61.2
Bidirectional Self-Training with Multiple Anisotropic Prototypes for Domain Adaptive Semantic Segmentation
SePiCo - DeepLabv2
61.0
SePiCo: Semantic-Guided Pixel Contrast for Domain Adaptive Semantic Segmentation
CPSL
60.8
Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation
G2L
59.7
G2L: A Global to Local Alignment Method for Unsupervised Domain Adaptive Semantic Segmentation
CMFormer
59.7
Learning Content-enhanced Mask Transformer for Domain Generalized Urban-Scene Segmentation
EHTDI(ResNet-101)
58.8
Exploring High-quality Target Domain Information for Unsupervised Domain Adaptive Semantic Segmentation
0 of 71 row(s) selected.
Previous
Next