HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Smac
Smac On Smac Mmm2 1
Smac On Smac Mmm2 1
Metriken
Median Win Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Median Win Rate
Paper Title
Repository
ACE
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
QMIX
69
The StarCraft Multi-Agent Challenge
DIQL
85.23
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX
96.88
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX
69
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
IQL
0
The StarCraft Multi-Agent Challenge
VDN
1
The StarCraft Multi-Agent Challenge
QMIX
92.44
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN
89.2
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
68.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic
0
The StarCraft Multi-Agent Challenge
DDN
97.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
95.11
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QPLEX
96.88
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
0 of 14 row(s) selected.
Previous
Next