HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
SMAC
Smac On Smac Corridor
Smac On Smac Corridor
Metriken
Average Score
Median Win Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average Score
Median Win Rate
Paper Title
Repository
DIQL
19.68
91.62
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
19.08
81.25
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
VDN
19.47
85.34
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
-
0
The StarCraft Multi-Agent Challenge
-
DDN
20
95.4
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
QMIX
15.07
37.61
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
19.66
90.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
18.73
75.00
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
ACE
-
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QMIX
-
1
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
QMIX
-
1
The StarCraft Multi-Agent Challenge
-
IQL
19.42
84.87
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
0 of 13 row(s) selected.
Previous
Next
Smac On Smac Corridor | SOTA | HyperAI