HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Smac
Smac On Smac 6H Vs 8Z 1
Smac On Smac 6H Vs 8Z 1
Metriken
Median Win Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Median Win Rate
Paper Title
Repository
IQL
0
The StarCraft Multi-Agent Challenge
VDN
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic
0
The StarCraft Multi-Agent Challenge
DDN
83.92
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX
3
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
QMIX
12.78
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
ACE
93.75
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
VDN
0
The StarCraft Multi-Agent Challenge
QPLEX
-
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
QMIX
3
The StarCraft Multi-Agent Challenge
DMIX
49.43
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX
43.75
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
IQL
0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL
0.00
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 14 row(s) selected.
Previous
Next