HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
SMAC
Smac On Smac 27M Vs 30M
Smac On Smac 27M Vs 30M
Metriken
Average Score
Median Win Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average Score
Median Win Rate
Paper Title
Repository
DMIX
19.43
85.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
18.45
63.12
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DIQL
14.45
6.02
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
19.41
84.77
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
DDN
19.71
91.48
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
19.33
78.12
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
DPLEX
19.62
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
IQL
14.01
2.27
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
-
49
The StarCraft Multi-Agent Challenge
-
QMIX
-
49
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
0 of 11 row(s) selected.
Previous
Next