HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Sleep Stage Detection
Sleep Stage Detection On Shhs
Sleep Stage Detection On Shhs
Metriken
Accuracy
Cohen's Kappa
Macro-F1
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Cohen's Kappa
Macro-F1
Paper Title
Repository
MC2SleepNet 50% Masking (C4-A1 only)
88.6%
0.841
0.821
MC2SleepNet: Multi-modal Cross-masking with Contrastive Learning for Sleep Stage Classification
SynthSleepNet (EEG1+EOG1+EMG1)
89.28%
0.850
0.835
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
NeuroNet (C4-A1 only)
86.88%
-
0.812
NeuroNet: A Novel Hybrid Self-Supervised Learning Framework for Sleep Stage Classification Using Single-Channel EEG
-
CoRe-Sleep (EEG)
88.2%
0.834
0.808
-
-
SleePyCo (C4-A1 only)
87.9%
0.830
0.807
-
-
XSleepNet2 (EEG, EOG, EMG)
89.1%
0.847
0.823
-
-
SynthSleepNet (EEG2+EOG2+EMG1)
89.89%
0.860
0.845
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
SynthSleepNet (EEG1+EOG1)
88.31%
0.840
0.820
Toward Foundational Model for Sleep Analysis Using a Multimodal Hybrid Self-Supervised Learning Framework
CoRe-Sleep (EEG-EOG)
89.5%
0.853
0.823
CoRe-Sleep: A Multimodal Fusion Framework for Time Series Robust to Imperfect Modalities
-
MC2SleepNet 15% Masking (C4-A1 only)
88.5%
0.840
0.823
MC2SleepNet: Multi-modal Cross-masking with Contrastive Learning for Sleep Stage Classification
0 of 10 row(s) selected.
Previous
Next