HyperAI

Skeleton Based Action Recognition On N Ucla

Metriken

Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracy
semantics-guided-neural-networks-for92.5%
hierarchically-decomposed-graph-convolutional97.2
infogcn-representation-learning-for-human97.0
mmnet-a-model-based-multimodal-network-for93.7
vpn-learning-video-pose-embedding-for93.5
skateformer-skeletal-temporal-transformer-for98.3
vpn-rethinking-video-pose-embeddings-for93.5
language-knowledge-assisted-representation97.6
skeleton-based-action-recognition-via97.0
action-recognition-for-privacy-preserving95.69
action-capsules-human-skeleton-action97.3
multi-scale-spatial-temporal-convolutional95.3
view-adaptive-neural-networks-for-high88.1%
hierarchical-action-classification-with93.99
channel-wise-topology-refinement-graph96.5
temporal-decoupling-graph-convolutional97.4
action-machine-rethinking-action-recognition92.3%
glimpse-clouds-human-activity-recognition87.6%
multi-modality-co-learning-for-efficient-197.5
language-supervised-training-for-skeleton97.2
eleatt-rnn-adding-attentiveness-to-neurons-in90.7%
a-dense-sparse-complementary-network-for99.1