HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Halbüberwachte Semantische Segmentierung
Semi Supervised Semantic Segmentation On 22
Semi Supervised Semantic Segmentation On 22
Metriken
Validation mIoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Validation mIoU
Paper Title
UniMatch V2 (DINOv2-B)
83.6
UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation
SemiVL (ViT-B/16)
77.9
SemiVL: Semi-Supervised Semantic Segmentation with Vision-Language Guidance
PrevMatch (ResNet-101)
77.7%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
CorrMatch (Deeplabv3+ with ResNet-101)
77.3
CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation
S4MC
77.00
Semi-Supervised Semantic Segmentation via Marginal Contextual Information
Dual Teacher (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
76.81
Switching Temporary Teachers for Semi-Supervised Semantic Segmentation
UniMatch (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
76.59
Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation
n-CPS (ResNet-50)
76.08
n-CPS: Generalising Cross Pseudo Supervision to n Networks for Semi-Supervised Semantic Segmentation
AEL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
75.83%
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning
PrevMatch (ResNet-50)
75.8%
Revisiting and Maximizing Temporal Knowledge in Semi-supervised Semantic Segmentation
CW-BASS (DeepLab v3+ with ResNet-50)
75.00
CW-BASS: Confidence-Weighted Boundary-Aware Learning for Semi-Supervised Semantic Segmentation
U2PL (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K, AEL)
74.90%
Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels
PCR (DeepLab v3+ with ResNet-101 pretraind on ImageNet-1K)
73.41%
Semi-supervised Semantic Segmentation with Prototype-based Consistency Regularization
Dense FixMatch (DeepLabv3+ ResNet-101, over-sampling, single pass eval)
71.1%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
Dense FixMatch (DeepLabv3+ ResNet-50, uniform sampling, single pass eval)
70.65%
Dense FixMatch: a simple semi-supervised learning method for pixel-wise prediction tasks
CPCL (DeepLab v3+ with ResNet-50)
69.92%
Conservative-Progressive Collaborative Learning for Semi-supervised Semantic Segmentation
CPS (DeepLab v3+ with ResNet-101)
69.8
Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision
0 of 17 row(s) selected.
Previous
Next