HyperAI

Semi Supervised Semantic Segmentation On 22

Metriken

Validation mIoU

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameValidation mIoU
semi-supervised-semantic-segmentation-using-274.90%
confidence-weighted-boundary-aware-learning75.00
semi-supervised-semantic-segmentation-with-673.41%
dense-fixmatch-a-simple-semi-supervised71.1%
n-cps-generalising-cross-pseudo-supervision76.08
revisiting-and-maximizing-temporal-knowledge77.7%
switching-temporary-teachers-for-semi76.81
semivl-semi-supervised-semantic-segmentation77.9
semi-supervised-semantic-segmentation-with-369.8
revisiting-and-maximizing-temporal-knowledge75.8%
semi-supervised-semantic-segmentation-via-275.83%
revisiting-weak-to-strong-consistency-in-semi76.59
unimatch-v2-pushing-the-limit-of-semi83.6
corrmatch-label-propagation-via-correlation77.3
conservative-progressive-collaborative69.92%
semi-supervised-semantic-segmentation-via-377.00
dense-fixmatch-a-simple-semi-supervised70.65%