HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semi Supervised Image Classification
Semi Supervised Image Classification On Svhn
Semi Supervised Image Classification On Svhn
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
Triple-GAN-V2 (CNN-13, no aug)
96.04
Triple Generative Adversarial Networks
UDA
97.54
Unsupervised Data Augmentation for Consistency Training
DoubleMatch
97.90 ± 0.07
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
ICT (WRN-28-2)
96.47
Interpolation Consistency Training for Semi-Supervised Learning
ICT
96.11
Interpolation Consistency Training for Semi-Supervised Learning
SESEMI SSL (ConvNet)
94.41
Exploring Self-Supervised Regularization for Supervised and Semi-Supervised Learning
MixMatch
96.73
MixMatch: A Holistic Approach to Semi-Supervised Learning
GAN
91.89
Improved Techniques for Training GANs
Meta Pseudo Labels (WRN-28-2)
98.01 ± 0.07
Meta Pseudo Labels
Triple-GAN-V2 (CNN-13)
96.55
Triple Generative Adversarial Networks
Mean Teacher
96.05
Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
FixMatch (CTA)
97.64±0.19
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
ReMixMatch
97.17
ReMixMatch: Semi-Supervised Learning with Distribution Alignment and Augmentation Anchoring
-
VAT
94.58
Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning
R2-D2 (CNN-13)
96.36
Repetitive Reprediction Deep Decipher for Semi-Supervised Learning
FCE
96.13
Flow Contrastive Estimation of Energy-Based Models
EnAET
97.58
EnAET: A Self-Trained framework for Semi-Supervised and Supervised Learning with Ensemble Transformations
0 of 17 row(s) selected.
Previous
Next