Semi Supervised Image Classification On Svhn
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
triple-generative-adversarial-networks | 96.04 |
unsupervised-data-augmentation-1 | 97.54 |
doublematch-improving-semi-supervised | 97.90 ± 0.07 |
interpolation-consistency-training-for-semi | 96.47 |
interpolation-consistency-training-for-semi | 96.11 |
semi-supervised-learning-with-self-supervised | 94.41 |
mixmatch-a-holistic-approach-to-semi | 96.73 |
improved-techniques-for-training-gans | 91.89 |
meta-pseudo-labels | 98.01 ± 0.07 |
triple-generative-adversarial-networks | 96.55 |
mean-teachers-are-better-role-models-weight | 96.05 |
fixmatch-simplifying-semi-supervised-learning | 97.64±0.19 |
remixmatch-semi-supervised-learning-with-1 | 97.17 |
virtual-adversarial-training-a-regularization | 94.58 |
repetitive-reprediction-deep-decipher-for | 96.36 |
flow-contrastive-estimation-of-energy-based | 96.13 |
enaet-self-trained-ensemble-autoencoding | 97.58 |