HyperAI

Semi Supervised Image Classification On Cifar 8

Metriken

Percentage error

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnamePercentage error
doublematch-improving-semi-supervised41.83± 1.22
dash-semi-supervised-learning-with-dynamic44.83±1.36
dp-ssl-towards-robust-semi-supervised43.17±1.29
semireward-a-general-reward-model-for-semi15.62
np-match-when-neural-processes-meet-semi38.67
semantic-aware-representation-learning-via-142.38±2.52
Modell 740.25±0.95
simmatch-semi-supervised-learning-with37.81
class-aware-contrastive-semi-supervised38.81
fixmatch-simplifying-semi-supervised-learning49.95±3.01
flexmatch-boosting-semi-supervised-learning39.94±1.62
contrastive-regularization-for-semi49.23
shrinking-class-space-for-enhanced-certainty35.36
usb-a-unified-semi-supervised-learning16.8
dash-semi-supervised-learning-with-dynamic44.76±0.96
remixmatch-semi-supervised-learning-with-144.28±2.06
semantic-aware-representation-learning-via-135.75±0.53
freematch-self-adaptive-thresholding-for-semi37.98