HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Halbüberwachte Bildklassifizierung
Semi Supervised Image Classification On 1
Semi Supervised Image Classification On 1
Metriken
Top 1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Top 1 Accuracy
Paper Title
Repository
PAWS (ResNet-50)
66.5%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
-
Rotation
-
S4L: Self-Supervised Semi-Supervised Learning
-
SimCLRv2 (ResNet-152 x3, SK)
74.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
-
VICREG (Resnet-50)
54.8%
VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning
-
Exemplar (joint training)
-
S4L: Self-Supervised Semi-Supervised Learning
-
SEER (RegNet10B)
62.4%
Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
-
SimCLRv2 distilled (ResNet-50 x2, SK)
75.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
-
Semi-ViT (ViT-Base)
71%
Semi-supervised Vision Transformers at Scale
-
Barlow Twins (ResNet-50)
55%
Barlow Twins: Self-Supervised Learning via Redundancy Reduction
-
DebiasPL (ResNet-50)
71.3%
Debiased Learning from Naturally Imbalanced Pseudo-Labels
-
SimMatchV2 (ResNet-50)
71.9%
SimMatchV2: Semi-Supervised Learning with Graph Consistency
-
PAWS (ResNet-50 2x)
69.6%
Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
-
SimCLR (ResNet-50 4×)
63.0%
A Simple Framework for Contrastive Learning of Visual Representations
-
BYOL (ResNet-50)
53.2%
Bootstrap your own latent: A new approach to self-supervised Learning
-
CPC
-
Representation Learning with Contrastive Predictive Coding
-
SimCLRv2 distilled (ResNet-50)
73.9%
Big Self-Supervised Models are Strong Semi-Supervised Learners
-
SimCLR (ResNet-50 2×)
58.5%
A Simple Framework for Contrastive Learning of Visual Representations
-
CoMatch + EPASS (ResNet-50)
67.4%
Debiasing, calibrating, and improving Semi-supervised Learning performance via simple Ensemble Projector
-
Exemplar
-
S4L: Self-Supervised Semi-Supervised Learning
-
CoMatch (w. MoCo v2)
67.1%
CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
-
0 of 58 row(s) selected.
Previous
Next
Semi Supervised Image Classification On 1 | SOTA | HyperAI