HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Semantische Segmentierung
Semantic Segmentation On Scannetv2
Semantic Segmentation On Scannetv2
Metriken
Mean IoU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean IoU
Paper Title
Repository
PSPNet
47.5%
Pyramid Scene Parsing Network
CMX
61.3%
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
AdapNet++
50.3
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
ENet
37.6%
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
ScanNet (2d proj)
33.0%
ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes
SSMA
57.7
Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
Floors are Flat
-
Floors are Flat: Leveraging Semantics for Real-Time Surface Normal Prediction
RFBNet
59.2%
RFBNet: Deep Multimodal Networks with Residual Fusion Blocks for RGB-D Semantic Segmentation
-
EMSAFormer
56.4%
Efficient Multi-Task Scene Analysis with RGB-D Transformers
EMSANet (2x ResNet-34 NBt1D, PanopticNDT version)
60.0%
PanopticNDT: Efficient and Robust Panoptic Mapping
3DMV (2d proj)
49.8%
3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation
MSeg1080_RVC
48.5%
MSeg: A Composite Dataset for Multi-domain Semantic Segmentation
0 of 12 row(s) selected.
Previous
Next
Semantic Segmentation On Scannetv2 | SOTA | HyperAI