HyperAI

Reading Comprehension On Race

Metriken

Accuracy
Accuracy (High)
Accuracy (Middle)

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameAccuracyAccuracy (High)Accuracy (Middle)
funnel-transformer-filtering-out-sequential85.784.488.8
megatron-lm-training-multi-billion-parameter89.588.691.8
language-models-are-few-shot-learners-45.5-
llama-open-and-efficient-foundation-language-1-48.364.1
llama-open-and-efficient-foundation-language-1-51.667.9
roberta-a-robustly-optimized-bert-pretraining83.281.386.5
megatron-lm-training-multi-billion-parameter90.990.093.1
deberta-decoding-enhanced-bert-with86.8--
language-models-are-few-shot-learners--58.4
improving-machine-reading-comprehension-with-291.4--
bloomberggpt-a-large-language-model-for-39.1452.3
bloomberggpt-a-large-language-model-for-34.3341.23
bloomberggpt-a-large-language-model-for-37.0247.42
orca-2-teaching-small-language-models-how-to80.79--
palm-scaling-language-modeling-with-pathways-1-42.357.9
xlnet-generalized-autoregressive-pretraining-84.088.6
bloomberggpt-a-large-language-model-for-41.7454.32
palm-scaling-language-modeling-with-pathways-1-49.168.1
llama-open-and-efficient-foundation-language-1-46.961.1
orca-2-teaching-small-language-models-how-to82.87--
llama-open-and-efficient-foundation-language-1-47.261.6
hierarchical-learning-for-generation-with67.3--
palm-scaling-language-modeling-with-pathways-1-47.564.3
dual-multi-head-co-attention-for-multi-choice89.892.688.7