HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Poseestimation
Pose Estimation On Ochuman
Pose Estimation On Ochuman
Metriken
Test AP
Validation AP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Test AP
Validation AP
Paper Title
ViTPose (ViTAE-G, GT bounding boxes)
93.3
92.8
ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
UniHCP (direct eval)
87.4
-
UniHCP: A Unified Model for Human-Centric Perceptions
RTMPose(RTMPose-l, GT bounding boxes)
80.3
80.5
RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose
BBox-Mask-Pose 2x
48.3
48.6
Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
BUCTD (CID-W32)
47.2
47.7
Rethinking pose estimation in crowds: overcoming the detection information-bottleneck and ambiguity
HQNet (ViT-L)
45.6
-
You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception
CID (HRNet-W48)
45.0
46.1
Contextual Instance Decoupling for Robust Multi-Person Pose Estimation
MaskPose-b
45.0
45.3
Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
MIPNet (HRNet-W48)
42.5
42.0
Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation
HQNet (ResNet-50)
40.0
-
You Only Learn One Query: Learning Unified Human Query for Single-Stage Multi-Person Multi-Task Human-Centric Perception
HRNet-W48
37.2
37.8
Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation
HGG (AE+)
36.0
41.8
Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation
ResNet-152
33.3
41.0
Simple Baselines for Human Pose Estimation and Tracking
Associative Embedding+
32.8
40.0
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
RMPE
30.7
38.8
RMPE: Regional Multi-person Pose Estimation
Associative Embedding
29.5
32.1
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
ResNet-50
29.5
32.1
Simple Baselines for Human Pose Estimation and Tracking
TransPose-H
-
62.3
TransPose: Keypoint Localization via Transformer
0 of 18 row(s) selected.
Previous
Next
Pose Estimation On Ochuman | SOTA | HyperAI