HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Poseestimation
Pose Estimation On Itop Front View
Pose Estimation On Itop Front View
Metriken
Mean mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Mean mAP
Paper Title
AdaPose
93.38
Sequential 3D Human Pose Estimation Using Adaptive Point Cloud Sampling Strategy
SPiKE
89.19
SPiKE: 3D Human Pose from Point Cloud Sequences
DECA-D3
88.75
DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders
V2V-PoseNet
88.74
V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
A2J
88.0
A2J: Anchor-to-Joint Regression Network for 3D Articulated Pose Estimation from a Single Depth Image
REN
84.9
Towards Good Practices for Deep 3D Hand Pose Estimation
Multi-task learning + viewpoint invariance
77.4
Towards Viewpoint Invariant 3D Human Pose Estimation
0 of 7 row(s) selected.
Previous
Next
Pose Estimation On Itop Front View | SOTA | HyperAI