HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Punktewolke-Registrierung
Point Cloud Registration On Kitti Trained On
Point Cloud Registration On Kitti Trained On
Metriken
Success Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Success Rate
Paper Title
Repository
FCGF+PointDSC
96.76
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
-
GeoTransformer
67.93
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
-
YOHO-O
81.44
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
-
GeDi
98.92
Learning general and distinctive 3D local deep descriptors for point cloud registration
-
FCGF
24.19
Fully Convolutional Geometric Features
YOHO-C
82.16
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
-
SpinNet
81.44
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
-
D3Feat-pred
36.76
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
-
Greedy Grid Search
90.27
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
-
FCGF+SC2-PCR
97.66
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
-
Exhaustive Grid Search
94.95
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
Predator
41.20
PREDATOR: Registration of 3D Point Clouds with Low Overlap
-
FPFH+PointDSC
94.05
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
-
DIP
93.51
Distinctive 3D local deep descriptors
-
0 of 14 row(s) selected.
Previous
Next
Point Cloud Registration On Kitti Trained On | SOTA | HyperAI