HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Punktewolke-Registrierung
Point Cloud Registration On Eth Trained On
Point Cloud Registration On Eth Trained On
Metriken
Feature Matching Recall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Feature Matching Recall
Paper Title
Repository
CGF
0.202
Learning Compact Geometric Features
-
DIP
0.928
Distinctive 3D local deep descriptors
-
GeDi
0.982
Learning general and distinctive 3D local deep descriptors for point cloud registration
-
FPFH
0.221
Fast Point Feature Histograms (FPFH) for 3D Registration
FCGF
0.161
Fully Convolutional Geometric Features
D3Feat-pred
0.563
D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features
-
PerfectMatch
0.790
The Perfect Match: 3D Point Cloud Matching with Smoothed Densities
-
Greedy Grid Search
0.784
Challenging the Universal Representation of Deep Models for 3D Point Cloud Registration
-
3DMatch
0.169
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions
-
Exhaustive Grid Search
-
Addressing the generalization of 3D registration methods with a featureless baseline and an unbiased benchmark
FCGF+SC2-PCR
-
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
-
YOHO-O
-
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
-
FPFH+PointDSC
-
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
-
FPFH+SC2-PCR
-
SC2-PCR: A Second Order Spatial Compatibility for Efficient and Robust Point Cloud Registration
-
GeoTransformer
-
GeoTransformer: Fast and Robust Point Cloud Registration with Geometric Transformer
-
LMVD
0.616
End-to-End Learning Local Multi-view Descriptors for 3D Point Clouds
-
FCGF+PointDSC
-
PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency
-
YOHO-C
-
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
-
GO-ICP
-
Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration
-
SpinNet
0.928
SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration
-
0 of 20 row(s) selected.
Previous
Next
Point Cloud Registration On Eth Trained On | SOTA | HyperAI