Person Re Identification On Market 1501
Metriken
Rank-1
mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Rank-1 | mAP |
---|---|---|
counterfactual-attention-learning-for-fine | 95.5 | 89.5 |
auto-reid-searching-for-a-part-aware-convnet | 95.4 | 94.2 |
omni-scale-feature-learning-for-person-re | 94.8 | 84.9 |
top-db-net-top-dropblock-for-activation | 95.5 | 94.1 |
body-part-based-representation-learning-for | 95.7 | 89.4 |
deep-attention-aware-feature-learning-for | 95.1 | 87.9 |
gated-siamese-convolutional-neural-network | 65.88 | 39.55 |
circle-loss-a-unified-perspective-of-pair | 96.1 | 87.4 |
attribute-aware-attention-model-for-fine | 86.54 | 68.97 |
beyond-human-parts-dual-part-aligned | 95.2 | 85.6 |
aggregating-deep-pyramidal-representations | 93.6 | 81.7 |
human-semantic-parsing-for-person-re | 93.6 | 83.3 |
disassembling-the-dataset-a-camera-alignment | 94.3 | 83.6 |
enhancing-person-re-identification-via | 96.1 | 92.0 |
camera-style-adaptation-for-person-re | 85.66 | 65.87 |
in-defense-of-the-triplet-loss-for-person-re | 81.38 | 60.71 |
dual-cluster-contrastive-learning-for-person | 95.4 | 89.2 |
msinet-twins-contrastive-search-of-multi | 95.3 | 89.6 |
dip-learning-discriminative-implicit-parts | 95.8 | 90.8 |
keypoint-promptable-re-identification | 95.9 | 89.6 |
horizontal-pyramid-matching-for-person-re | 94.2 | 82.7 |
incremental-generative-occlusion-adversarial | - | 84.1 |
unihcp-a-unified-model-for-human-centric | - | 90.3 |
person-re-identification-past-present-and | 72.54 | 46.00 |
image-based-and-partially-categorical | 94.77 | 92.64 |
cluster-level-feature-alignment-for-person-re | 95.7 | 89.5 |
deep-representation-learning-with-part-loss | 88.2 | 69.3 |
learning-discriminative-features-with | 95.7 | 86.9 |
prototypical-contrastive-learning-based-clip | 96.1 | 91.0 |
rethinking-person-re-identification-from-a | 96.4 | 95.3 |
a-pose-sensitive-embedding-for-person-re | 90.3 | 84 |
deep-attention-aware-feature-learning-for | 96.4 | 95 |
enhancing-person-re-identification-via | 96.2 | 91.0 |
understanding-image-retrieval-re-ranking-a | 96.11 | 94.65 |
unsupervised-tracklet-person-re | 69.2 | 46.2 |
exciting-inhibition-network-for-person | - | 88.75 |
attention-network-robustification-for-person | 95.8 | 88.7 |
a-coarse-to-fine-pyramidal-model-for-person | 95.7 | 88.2 |
a-strong-baseline-and-batch-normalization | - | 88.2 |
aggregating-deep-pyramidal-representations | 94.6 | 91.4 |
ca-jaccard-camera-aware-jaccard-distance-for | 96.2 | 94.5 |
viewpoint-aware-loss-with-angular | 96.79 | 95.43 |
circle-loss-a-unified-perspective-of-pair | 94.2 | 84.9 |
from-poses-to-identity-training-free-person | 95.52 | 93.01 |
top-db-net-top-dropblock-for-activation | 94.9 | 85.8 |
3d-magic-mirror-clothing-reconstruction-from | 95.43 | 88.54 |
learning-diverse-features-with-part-level | 95.6 | 88.9 |
resource-aware-person-re-identification | 90.9 | 86.7 |
an-effective-data-augmentation-for-person-re | 96.9 | 95.6 |
graph-based-person-signature-for-person-re | 95.2 | 87.8 |
fpb-feature-pyramid-branch-for-person-re | 96.1 | 90.6 |
alignedreid-surpassing-human-level | 94.4 | 90.7 |
re-ranking-person-re-identification-with-k | 77.11 | 63.63 |
devil-s-in-the-detail-graph-based-key-point | 95.96 | 90.30 |
person-re-identification-in-the-3d-space | 87.74 | 69.52 |
unsupervised-pre-training-for-person-re | 97 | 92 |
disassembling-the-dataset-a-camera-alignment | 91.3 | 77.3 |
transreid-transformer-based-object-re | 95.2 | 89.5 |
in-defense-of-the-triplet-loss-for-person-re | 86.67 | 81.07 |
learning-a-discriminative-null-space-for | 61.02 | 35.68 |
plip-language-image-pre-training-for-person | - | 91.2 |
person-re-identification-by-deep-joint | 85.1 | 65.5 |
person-re-identification-with-deep-similarity | - | 82.8 |
flipreid-closing-the-gap-between-training-and | 95.8 | 94.7 |
scalable-person-re-identification-on | 82.21 | 68.80 |
glad-global-local-alignment-descriptor-for | 89.9 | 73.9 |
scalable-metric-learning-via-weighted | 45.16 | - |
learning-to-disentangle-scenes-for-person-re | 96.17 | 94.89 |
beyond-part-models-person-retrieval-with | 93.8 | 81.6 |
lightweight-multi-branch-network-for-person | - | - |
person-re-identification-by-local-maximal | 43.79 | 22.22 |
aggregating-deep-pyramidal-representations | 95.2 | 86.7 |
unlabeled-samples-generated-by-gan-improve | 83.97 | 66.07 |
multi-task-learning-with-coarse-priors-for | 96.4 | 90.1 |
aggregating-deep-pyramidal-representations | 96.1 | 94.0 |
improved-person-re-identification-based-on | 92.5 | 80.1 |
unsupervised-pre-training-for-person-re | - | 96.21 |
pose-driven-deep-convolutional-model-for | 84.14 | 63.41 |
large-scale-pre-training-for-person-re | 96.6 | 91.9 |
pedestrian-alignment-network-for-large-scale | 88.57 | 81.53 |
deeply-learned-part-aligned-representations | 81.0 | 63.4 |
identity-guided-human-semantic-parsing-for | 95.3 | 88.6 |
unsupervised-person-re-identification | 44.7 | 20.1 |
Modell 84 | 95.64 | 88.75 |
deep-constrained-dominant-sets-for-person-re | 95.4 | 93.3 |
person-re-identification-via-attention | 96.2 | 90.5 |
learning-disentangled-representation-for | 95.2 | 87.1 |
adaptivereid-adaptive-l2-regularization-in | 95.6 | 88.9 |
flipreid-closing-the-gap-between-training-and | 95.5 | 89.6 |
body-part-based-representation-learning-for | 96.4 | 95.3 |
cross-view-asymmetric-metric-learning-for | 54.5 | 26.3 |
features-for-multi-target-multi-camera | 89.4 | 75.6 |
joint-discriminative-and-generative-learning | 94.8 | 86.0 |
fd-gan-pose-guided-feature-distilling-gan-for | 90.5 | 77.7 |
keypoint-promptable-re-identification | 96.62 | 93.22 |
beyond-part-models-person-retrieval-with | 92.3 | 77.4 |
bags-of-tricks-and-a-strong-baseline-for-deep | 95.43 | 94.24 |
attention-network-robustification-for-person | 96.2 | 89.7 |
joint-discriminative-and-generative-learning | 95.4 | 92.49 |
lightweight-multi-branch-network-for-person | 96.8 | 95.3 |
a-discriminatively-learned-cnn-embedding-for | 79.51 | 59.87 |
lightweight-multi-branch-network-for-person | 96.3 | 91.5 |
unsupervised-person-re-identification-by-soft | 67.7 | 40 |
person-re-identification-with-bias-controlled | 93.1 | 89.3 |
beyond-appearance-a-semantic-controllable | 96.7 | 95.6 |
deep-miner-a-deep-and-multi-branch-network | 95.7 | 90.40 |
git-graph-interactive-transformer-for-vehicle | 95.7 | 88.9 |
in-defense-of-the-triplet-loss-for-person-re | 84.59 | 75.62 |
abd-net-attentive-but-diverse-person-re | 95.6 | 88.28 |
improved-person-re-identification-based-on | 93.7 | 90.8 |
beyond-appearance-a-semantic-controllable | 96.9 | 93.9 |
camera-aware-proxies-for-unsupervised-person | 93.3 | 85.1 |
adaptivereid-adaptive-l2-regularization-in | 96.0 | 94.4 |
rethinking-person-re-identification-from-a | 96 | 90.2 |
in-defense-of-the-triplet-loss-for-person-re | 84.92 | 69.14 |
remix-training-generalized-person-re | 96.2 | 89.8 |
learning-instance-level-spatial-temporal | - | 90.8 |
self-supervised-pre-training-for-transformer | 96.7 | 93.2 |
towards-better-validity-dispersion-based | - | 41.3 |
parameter-free-spatial-attention-network-for | 94.7 | 91.7 |
incremental-learning-in-person-re | 89.3 | 71.8 |
camera-style-adaptation-for-person-re | 89.49 | 71.55 |
scalable-person-re-identification-a-benchmark | 34.40 | 14.09 |
svdnet-for-pedestrian-retrieval | 82.3 | 62.1 |
attrimeter-an-attribute-guided-metric | 96.1 | 88.8 |
attention-network-robustification-for-person | 96.2 | - |
prototypical-contrastive-learning-based-clip | 95.9 | 91.4 |
from-poses-to-identity-training-free-person | 97.3 | 94.9 |
clip-reid-exploiting-vision-language-model | 95.4 | 90.5 |
enhancing-person-re-identification-via | 97 | 94.9 |
3d-magic-mirror-clothing-reconstruction-from | 95.07 | 87.80 |
semi-supervised-domain-generalizable-person | 97.36 | 94.15 |
spatial-temporal-person-re-identification | 98.0 | 95.5 |
template-aware-transformer-for-person | 95.8 | 89.7 |
learning-deep-context-aware-features-over | 80.31 | 57.53 |