HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Personen-Wiedererkennung
Person Re Identification On Esports Sensors
Person Re Identification On Esports Sensors
Metriken
Accuracy
LogLoss
ROC AUC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
LogLoss
ROC AUC
Paper Title
Random Forest
52.1
0.01617
0.919
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
Logistic Regression
48.8
0.01615
0.884
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
SVM
45
0.01588
0.89
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
KNN
41.5
0.05735
0.84
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
Random Guess
10
0.02303
0.5
Collection and Validation of Psychophysiological Data from Professional and Amateur Players: a Multimodal eSports Dataset
0 of 5 row(s) selected.
Previous
Next
Person Re Identification On Esports Sensors | SOTA | HyperAI