HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Object Detection
Object Detection On Pku Ddd17 Car
Object Detection On Pku Ddd17 Car
Metriken
mAP50
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP50
Paper Title
Repository
ECANet
82.2
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
CBAM
81.9
CBAM: Convolutional Block Attention Module
DCF
83.4
Calibrated RGB-D Salient Object Detection
CMX
80.4
CMX: Cross-Modal Fusion for RGB-X Semantic Segmentation with Transformers
EFNet
83.0
Event-Based Fusion for Motion Deblurring with Cross-modal Attention
SAGate
82.0
Bi-directional Cross-Modality Feature Propagation with Separation-and-Aggregation Gate for RGB-D Semantic Segmentation
FPN-Fusion
81.9
Fusing Event-based and RGB camera for Robust Object Detection in Adverse Conditions
-
SSD
73.1
SSD: Single Shot MultiBox Detector
SPNet
84.7
Specificity-preserving RGB-D Saliency Detection
CAFR
86.7
Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection
SENet
81.6
Squeeze-and-Excitation Networks
RENet
81.4
RGB-Event Fusion for Moving Object Detection in Autonomous Driving
YOLOv4
81.3
YOLOv4: Optimal Speed and Accuracy of Object Detection
RAMNet
79.6
Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction
0 of 14 row(s) selected.
Previous
Next