HyperAI

Object Detection On Pascal Voc 2007

Metriken

MAP

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameMAP
objects-as-points80.7%
spatial-pyramid-pooling-in-deep-convolutional60.9%
learning-visual-representations-for-transfer-174.37%
yolo9000-better-faster-stronger78.6%
ultra-efficient-on-device-object-detection-on42.3%
training-region-based-object-detectors-with78.9%
thundernet-towards-real-time-generic-object78.6%
hierarchical-shot-detector83.0%
deformable-part-models-are-convolutional45.2%
random-erasing-data-augmentation76.2%
hierarchical-shot-detector81.7%
inner-iou-more-effective-intersection-over-
blitznet-a-real-time-deep-network-for-scene81.5%
rich-feature-hierarchies-for-accurate-object58.5%
ssd-single-shot-multibox-detector81.6%
multi-modal-transformers-excel-at-class84.16%
softer-nms-rethinking-bounding-box-regression71.6%
fast-r-cnn70.0%
femtodet-an-object-detection-baseline-for22.90%
self-knowledge-distillation-a-simple-way-for79.7%
simple-copy-paste-is-a-strong-data89.3%
localize-to-classify-and-classify-to-localize81.5%
dpnet-dual-path-network-for-real-time-object79.2%
eeea-net-an-early-exit-evolutionary-neural81.8%
a-fast-rcnn-hard-positive-generation-via74.2%
couplenet-coupling-global-structure-with82.7%
subcategory-aware-convolutional-neural68.5%
you-only-look-once-unified-real-time-object63.4%
denet-scalable-real-time-object-detection77.1%
yolo-former-yolo-shakes-hand-with-vit86.01%