Object Detection On Crowdhuman Full Body
Metriken
AP
mMR
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | AP | mMR |
---|---|---|
when-pedestrian-detection-meets-multi-modal | 97.1 | 30.8 |
noh-nms-improving-pedestrian-detection-by | 89.0 | 43.9 |
adaptive-nms-refining-pedestrian-detection-in | 84.71 | 49.73 |
unihcp-a-unified-model-for-human-centric | 92.5 | 41.6 |
hulk-a-universal-knowledge-translator-for | 93 | 36.5 |
dense-distinct-query-for-end-to-end-object | 93.5 | 40.4 |
hulk-a-universal-knowledge-translator-for | 92.4 | 40.7 |
iterdet-iterative-scheme-for-objectdetection | 84.43 | 49.12 |
dense-distinct-query-for-end-to-end-object | 92.7 | 41.0 |
progressive-end-to-end-object-detection-in | 94.1 | 37.7 |
beta-r-cnn-looking-into-pedestrian-detection-1 | 89.6 | 40.3 |
internimage-exploring-large-scale-vision | 97.2 | - |
ps-rcnn-detecting-secondary-human-instances | 87.94 | - |
ps-rcnn-detecting-secondary-human-instances | 86.05 | - |
detection-in-crowded-scenes-one-proposal | 90.7 | 41.4 |
crowdhuman-a-benchmark-for-detecting-human-in | 84.95 | 50.49 |
dense-distinct-query-for-end-to-end-object | 93.8 | 39.7 |
iterdet-iterative-scheme-for-objectdetection | 88.08 | 49.44 |
v2f-net-explicit-decomposition-of-occluded | 91.03 | 42.28 |