HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Objekterkennung
Object Detection On Coco Minival
Object Detection On Coco Minival
Metriken
AP50
AP75
APL
APM
APS
box AP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP50
AP75
APL
APM
APS
box AP
Paper Title
Co-DETR
-
-
-
-
-
65.9
DETRs with Collaborative Hybrid Assignments Training
M3I Pre-training (InternImage-H)
-
-
-
-
-
65.0
Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information
InternImage-H
-
-
-
-
-
65.0
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
Co-DETR (Swin-L)
-
-
-
-
-
64.7
DETRs with Collaborative Hybrid Assignments Training
Focal-Stable-DINO (Focal-Huge, no TTA)
81.5
71.4
78.5
68.5
50.4
64.6
A Strong and Reproducible Object Detector with Only Public Datasets
EVA
82.1
70.8
78.5
68.4
49.4
64.5
EVA: Exploring the Limits of Masked Visual Representation Learning at Scale
ViT-CoMer
-
-
-
-
-
64.3
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
FocalNet-H (DINO)
-
-
-
-
-
64.2
Focal Modulation Networks
InternImage-XL
-
-
-
-
-
64.2
InternImage: Exploring Large-Scale Vision Foundation Models with Deformable Convolutions
CP-DETR-L Swin-L(Fine tuning separately in COCO)
-
-
-
-
-
64.1
CP-DETR: Concept Prompt Guide DETR Toward Stronger Universal Object Detection
RevCol-H(DINO)
-
-
-
-
-
63.8
Reversible Column Networks
DINO (Swin-L)
-
-
-
-
-
63.2
DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Grounding DINO
-
-
-
-
-
63.0
Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection
SwinV2-G (HTC++)
-
-
-
-
-
62.5
Swin Transformer V2: Scaling Up Capacity and Resolution
GLEE-Pro
-
-
-
-
-
62.0
General Object Foundation Model for Images and Videos at Scale
Florence-CoSwin-H
-
-
-
-
-
62
Florence: A New Foundation Model for Computer Vision
ViTDet, ViT-H Cascade (multiscale)
-
-
-
-
-
61.3
Exploring Plain Vision Transformer Backbones for Object Detection
GLIP (Swin-L, multi-scale)
-
-
-
-
-
60.8
Grounded Language-Image Pre-training
Soft Teacher + Swin-L (HTC++, multi-scale)
-
-
-
-
-
60.7
End-to-End Semi-Supervised Object Detection with Soft Teacher
UNINEXT-H
77.5
66.7
75.3
64.8
45.1
60.6
Universal Instance Perception as Object Discovery and Retrieval
0 of 219 row(s) selected.
Previous
Next
Object Detection On Coco Minival | SOTA | HyperAI