HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Squirrel
Node Classification On Squirrel
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
FaberNet
76.71±1.92
HoloNets: Spectral Convolutions do extend to Directed Graphs
CoED
75.32±1.82
Improving Graph Neural Networks by Learning Continuous Edge Directions
Dir-GNN
75.31±1.92
Edge Directionality Improves Learning on Heterophilic Graphs
HLP Concat
74.17±1.83
Simple Truncated SVD based Model for Node Classification on Heterophilic Graphs
FSGNN (8-hop)
74.10±1.89
Improving Graph Neural Networks with Simple Architecture Design
DJ-GNN
73.48±1.59
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
H2GCN+DHGR
72.24±1.52
Make Heterophily Graphs Better Fit GNN: A Graph Rewiring Approach
Graph ESN
71.2±1.5
Beyond Homophily with Graph Echo State Networks
SADE-GCN
68.20±1.57
Self-attention Dual Embedding for Graphs with Heterophily
ACMII-GCN++
67.4 ± 2.21
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
67.07 ± 1.65
Revisiting Heterophily For Graph Neural Networks
ACM-GCN++
67.06 ± 1.66
Revisiting Heterophily For Graph Neural Networks
ACM-GCN+
66.98 ± 1.71
Revisiting Heterophily For Graph Neural Networks
UGT
66.96 ±2.49
Transitivity-Preserving Graph Representation Learning for Bridging Local Connectivity and Role-based Similarity
RDGNN-I
65.62 ± 2.33
Graph Neural Reaction Diffusion Models
CNMPGNN
63.60±1.96
CN-Motifs Perceptive Graph Neural Networks
M2M-GNN
63.60 ± 1.7
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
LW-GCN
62.6±1.6
Label-Wise Graph Convolutional Network for Heterophilic Graphs
Ordered GNN
62.44±1.96
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
HDP
62.07 ± 1.57
Heterophilous Distribution Propagation for Graph Neural Networks
0 of 59 row(s) selected.
Previous
Next
Node Classification On Squirrel | SOTA | HyperAI