HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Pubmed
Node Classification On Pubmed
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
NCGCN
91.64 ± 0.53
Clarify Confused Nodes via Separated Learning
NCSAGE
91.55 ± 0.38
Clarify Confused Nodes via Separated Learning
ACMII-Snowball-3
91.31 ± 0.6
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
ACM-GCN
90.74 ± 0.5
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
Graph-MLP + SAF
90.64 ± 0.46%
The Split Matters: Flat Minima Methods for Improving the Performance of GNNs
ACMII-Snowball-2
90.56 ± 0.39
Is Heterophily A Real Nightmare For Graph Neural Networks To Do Node Classification?
NodeNet
90.21%
NodeNet: A Graph Regularised Neural Network for Node Classification
CNMPGNN
90.07± 0.43
CN-Motifs Perceptive Graph Neural Networks
CoLinkDist
89.58%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
CoLinkDistMLP
89.53%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
SSP
89.36 ± 0.57
Optimization of Graph Neural Networks with Natural Gradient Descent
3ference
88.90
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
SplineCNN
88.88%
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
LinkDist
88.86%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
LinkDistMLP
88.79%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GCN + Mixup
87.9%
Mixup for Node and Graph Classification
GCN-LPA
87.8 ± 0.6
Unifying Graph Convolutional Neural Networks and Label Propagation
CGT
86.86±0.12
Mitigating Degree Biases in Message Passing Mechanism by Utilizing Community Structures
GRACE
86.7 ± 0.1
Deep Graph Contrastive Representation Learning
CT-Layer (PE)
86.07
DiffWire: Inductive Graph Rewiring via the Lovász Bound
0 of 69 row(s) selected.
Previous
Next
Node Classification On Pubmed | SOTA | HyperAI