HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Penn94
Node Classification On Penn94
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Dual-Net GNN
86.09±0.56
Feature Selection: Key to Enhance Node Classification with Graph Neural Networks
ACM-GCN++
86.08 ± 0.43
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN++
85.95 ± 0.26
Revisiting Heterophily For Graph Neural Networks
GloGNN++
85.74±0.42
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GloGNN
85.57 ± 0.35
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GNNMoE(GCN-like P)
85.11±0.39
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
ACM-GCN+
85.05 ± 0.19
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
84.95 ± 0.43
Revisiting Heterophily For Graph Neural Networks
DJ-GNN
84.84±0.34
Diffusion-Jump GNNs: Homophiliation via Learnable Metric Filters
NCGCN
84.74 ± 0.28
Clarify Confused Nodes via Separated Learning
LINKX
84.71 ± 0.52
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
GNNMoE(SAGE-like P)
84.05±0.37
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
MixHop
83.47 ± 0.71
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GCNII
82.92 ± 0.59
Simple and Deep Graph Convolutional Networks
GCN
82.47 ± 0.27
Semi-Supervised Classification with Graph Convolutional Networks
GNNMoE(GAT-like P)
81.98±0.47
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
NCSAGE
81.77 ± 0.71
Clarify Confused Nodes via Separated Learning
GCNJK
81.63 ± 0.54
New Benchmarks for Learning on Non-Homophilous Graphs
GAT
81.53 ± 0.55
Graph Attention Networks
GPRGCN
81.38 ± 0.16
Adaptive Universal Generalized PageRank Graph Neural Network
0 of 32 row(s) selected.
Previous
Next
Node Classification On Penn94 | SOTA | HyperAI