Node Classification On Flickr
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
data-augmentation-for-graph-neural-networks | 0.682 |
semi-supervised-classification-with-graph | 0.479 |
inductive-representation-learning-on-large | 0.641 |
a-comprehensive-study-on-large-scale-graph | 0.562 |
demo-net-degree-specific-graph-neural | 0.656 ± 0.000 |
semi-supervised-classification-with-graph | 0.546 |
graph-attention-networks | 0.359 |
deeper-insights-into-graph-convolutional | 0.557 |