HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Coauthor Cs
Node Classification On Coauthor Cs
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
NCGCN
96.64 ± 0.29
Clarify Confused Nodes via Separated Learning
NCSAGE
96.48 ± 0.25
Clarify Confused Nodes via Separated Learning
GraphSAGE
96.38±0.11
Classic GNNs are Strong Baselines: Reassessing GNNs for Node Classification
3ference
95.99%
Inferring from References with Differences for Semi-Supervised Node Classification on Graphs
GNNMoE(GCN-like P)
95.81±0.26
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
CoLinkDist
95.80%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
CoLinkDistMLP
95.74%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(GAT-like P)
95.72±0.23
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
LinkDistMLP
95.68%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
GNNMoE(SAGE-like P)
95.68±0.24
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
LinkDist
95.66%
Distilling Self-Knowledge From Contrastive Links to Classify Graph Nodes Without Passing Messages
HH-GraphSAGE
95.13%
Half-Hop: A graph upsampling approach for slowing down message passing
GraphSAGE
95.11%
Half-Hop: A graph upsampling approach for slowing down message passing
Exphormer
94.93±0.46%
Exphormer: Sparse Transformers for Graphs
GCN-LPA
94.8 ± 0.4
Unifying Graph Convolutional Neural Networks and Label Propagation
HH-GCN
94.71%
Half-Hop: A graph upsampling approach for slowing down message passing
GCN
94.06%
Half-Hop: A graph upsampling approach for slowing down message passing
GCN (PPR Diffusion)
93.01%
Diffusion Improves Graph Learning
DAGNN (Ours)
92.8%
Towards Deeper Graph Neural Networks
SIGN
91.98 ± 0.50
SIGN: Scalable Inception Graph Neural Networks
0 of 23 row(s) selected.
Previous
Next