HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Node Classification
Node Classification On Chameleon
Node Classification On Chameleon
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
Repository
GCNH
71.56±1.86
GCNH: A Simple Method For Representation Learning On Heterophilous Graphs
Dir-GNN
79.71±1.26
Edge Directionality Improves Learning on Heterophilic Graphs
H2GCN-1
52.96 ± 2.09
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
GCNII
63.86 ± 3.04
Simple and Deep Graph Convolutional Networks
H2GCN-2
58.38 ± 1.76
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
ACM-GCN
69.14 ± 1.91
Revisiting Heterophily For Graph Neural Networks
SADE-GCN
75.57±1.57
Self-attention Dual Embedding for Graphs with Heterophily
-
NLMLP
50.7 ± 2.2
Non-Local Graph Neural Networks
ACM-SGC-1
63.99 ± 1.66
Revisiting Heterophily For Graph Neural Networks
CNMPGNN
73.29±1.29
CN-Motifs Perceptive Graph Neural Networks
-
CATv3-sup
69.9±1.0
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
LINKX
68.42 ± 1.38
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
SDRF
42.73±0.15
Understanding over-squashing and bottlenecks on graphs via curvature
LHS
72.31±1.6
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
-
NLGCN
70.1 ± 2.9
Non-Local Graph Neural Networks
LSC-ARMA
68.4 ± 2.3
Restructuring Graph for Higher Homophily via Adaptive Spectral Clustering
-
FSGNN (3-hop)
78.14±1.25
Improving Graph Neural Networks with Simple Architecture Design
Conn-NSD
65.21±2.04
Sheaf Neural Networks with Connection Laplacians
IIE-GNN
72.13±2.11
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
-
M2M-GNN
75.20 ± 2.3
Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
0 of 61 row(s) selected.
Previous
Next