HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Knotenklassifikation
Node Classification On Actor
Node Classification On Actor
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
NCSAGE
43.89 ± 1.33
Clarify Confused Nodes via Separated Learning
NCGCN
43.16 ± 1.32
Clarify Confused Nodes via Separated Learning
2-HiGCN
41.81±0.52
Higher-order Graph Convolutional Network with Flower-Petals Laplacians on Simplicial Complexes
IIE-GNN
39.91 ± 2.41
Enhancing Intra-class Information Extraction for Heterophilous Graphs: One Neural Architecture Search Approach
LHS
38.87±1.0
Refining Latent Homophilic Structures over Heterophilic Graphs for Robust Graph Convolution Networks
RDGNN-I
38.69 ± 1.41
Graph Neural Reaction Diffusion Models
SignGT
38.65±0.32
SignGT: Signed Attention-based Graph Transformer for Graph Representation Learning
CATv3-sup
38.5±1.2
CAT: A Causally Graph Attention Network for Trimming Heterophilic Graph
Ordered GNN
37.99 ± 1.00
Ordered GNN: Ordering Message Passing to Deal with Heterophily and Over-smoothing
MbaGCN
37.97±0.91
Mamba-Based Graph Convolutional Networks: Tackling Over-smoothing with Selective State Space
GNNMoE(SAGE-like P)
37.97±1.01
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
SADE-GCN
37.91 ± 0.97
Self-attention Dual Embedding for Graphs with Heterophily
NLMLP
37.9 ± 1.3
Non-Local Graph Neural Networks
O(d)-NSD
37.81 ± 1.15
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Gen-NSD
37.80 ± 1.22
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
Diag-NSD
37.79 ± 1.01
Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs
GNNMoE(GAT-like P)
37.76±0.98
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
GloGNN++
37.7 ± 1.40
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
GGCN + UniGAP
37.69 ± 1.2
UniGAP: A Universal and Adaptive Graph Upsampling Approach to Mitigate Over-Smoothing in Node Classification Tasks
GNNMoE(GCN-like P)
37.59±1.36
Mixture of Experts Meets Decoupled Message Passing: Towards General and Adaptive Node Classification
0 of 62 row(s) selected.
Previous
Next
Node Classification On Actor | SOTA | HyperAI