HyperAI

Node Classification On Non Homophilic 14

Metriken

1:1 Accuracy

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
Modellname1:1 Accuracy
combining-label-propagation-and-simple-models-184.94 ± 0.49
large-scale-learning-on-non-homophilous56.70 ± 2.07
semi-supervised-classification-with-graph87.42 ± 0.37
clenshaw-graph-neural-networks91.69 ± 0.25
finding-global-homophily-in-graph-neural90.66 ± 0.11
mixhop-higher-order-graph-convolution90.58 ± 0.16
joint-adaptive-feature-smoothing-and-topology90.05 ± 0.31
large-scale-learning-on-non-homophilous86.68 ± 0.09
revisiting-heterophily-for-graph-neural91.33 ± 0.11
graph-neural-networks-with-learnable-and90.83±0.11
large-scale-learning-on-non-homophilous73.56 ± 0.14
revisiting-heterophily-for-graph-neural91.4 ± 0.07
revisiting-heterophily-for-graph-neural91.13 ± 0.09
simplifying-graph-convolutional-networks82.10 ± 0.14
predict-then-propagate-graph-neural-networks85.36 ± 0.62
finding-global-homophily-in-graph-neural90.91 ± 0.13
revisiting-heterophily-for-graph-neural91.01 ± 0.18
simple-and-deep-graph-convolutional-networks-190.24 ± 0.09
revisiting-heterophily-for-graph-neural91.44 ± 0.08
large-scale-learning-on-non-homophilous67.04 ± 0.20
simplifying-graph-convolutional-networks82.36 ± 0.37
large-scale-learning-on-non-homophilous89.30 ± 0.19
revisiting-heterophily-for-graph-neural91.19 ± 0.16
large-scale-learning-on-non-homophilous90.77 ± 0.27
large-scale-learning-on-non-homophilous66.02 ± 0.16
combining-label-propagation-and-simple-models-182.93 ± 0.15