HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Node Classification On Non Homophilic
Node Classification On Non Homophilic 14
Node Classification On Non Homophilic 14
Metriken
1:1 Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
1:1 Accuracy
Paper Title
Repository
C&S 2-hop
84.94 ± 0.49
Combining Label Propagation and Simple Models Out-performs Graph Neural Networks
GATJK
56.70 ± 2.07
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
GCN
87.42 ± 0.37
Semi-Supervised Classification with Graph Convolutional Networks
ClenshawGCN
91.69 ± 0.25
Clenshaw Graph Neural Networks
GloGNN
90.66 ± 0.11
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
MixHop
90.58 ± 0.16
MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing
GPRGCN
90.05 ± 0.31
Adaptive Universal Generalized PageRank Graph Neural Network
MLP
86.68 ± 0.09
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACM-GCN+
91.33 ± 0.11
Revisiting Heterophily For Graph Neural Networks
OptBasisGNN
90.83±0.11
Graph Neural Networks with Learnable and Optimal Polynomial Bases
LINK
73.56 ± 0.14
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
ACM-GCN++
91.4 ± 0.07
Revisiting Heterophily For Graph Neural Networks
ACMII-GCN+
91.13 ± 0.09
Revisiting Heterophily For Graph Neural Networks
SGC 2-hop
82.10 ± 0.14
Simplifying Graph Convolutional Networks
APPNP
85.36 ± 0.62
Predict then Propagate: Graph Neural Networks meet Personalized PageRank
GloGNN++
90.91 ± 0.13
Finding Global Homophily in Graph Neural Networks When Meeting Heterophily
ACMII-GCN++
91.01 ± 0.18
Revisiting Heterophily For Graph Neural Networks
GCNII
90.24 ± 0.09
Simple and Deep Graph Convolutional Networks
ACM-GCN
91.44 ± 0.08
Revisiting Heterophily For Graph Neural Networks
L Prop 2-hop
67.04 ± 0.20
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods
0 of 26 row(s) selected.
Previous
Next