HyperAI

Natural Language Inference On Multinli

Metriken

Matched
Mismatched

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Vergleichstabelle
ModellnameMatchedMismatched
ernie-20-a-continual-pre-training-framework88.788.8
exploring-the-limits-of-transfer-learning87.186.2
not-all-layers-are-equally-as-important-every84.484.5
training-complex-models-with-multi-task-weak87.687.2
exploring-the-limits-of-transfer-learning91.491.2
learning-general-purpose-distributed-sentence71.471.3
roberta-a-robustly-optimized-bert-pretraining90.8-
charformer-fast-character-transformers-via83.784.4
generative-pretrained-structured-transformers81.882.0
lm-cppf-paraphrasing-guided-data-augmentation--
exploring-the-limits-of-transfer-learning-91.7
smart-robust-and-efficient-fine-tuning-for--
exploring-the-limits-of-transfer-learning92.0-
informer-transformer-likes-informed-attention86.2886.34
19091035184.683.2
glue-a-multi-task-benchmark-and-analysis72.272.1
combining-similarity-features-and-deep70.771.1
structbert-incorporating-language-structures91.190.7
lamini-lm-a-diverse-herd-of-distilled-models36.537
first-train-to-generate-then-generate-to89.8-
q8bert-quantized-8bit-bert85.6-
pay-attention-to-mlps86.286.5
baseline-needs-more-love-on-simple-word68.267.7
adversarial-self-attention-for-language85-
lamini-lm-a-diverse-herd-of-distilled-models72.472
smart-robust-and-efficient-fine-tuning-for92.091.7
exploring-the-limits-of-transfer-learning-89.6
ernie-20-a-continual-pre-training-framework86.185.5
deberta-decoding-enhanced-bert-with91.191.1
not-all-layers-are-equally-as-important-every79.279.9
smart-robust-and-efficient-fine-tuning-for--
smart-robust-and-efficient-fine-tuning-for--
spanbert-improving-pre-training-by88.1-
fnet-mixing-tokens-with-fourier-transforms7876
llm-int8-8-bit-matrix-multiplication-for90.2-
smart-robust-and-efficient-fine-tuning-for--
exploring-the-limits-of-transfer-learning82.482.3
attention-boosted-sequential-inference-model73.9 73.9
ernie-enhanced-language-representation-with84.083.2
lamini-lm-a-diverse-herd-of-distilled-models61.461
xlnet-generalized-autoregressive-pretraining90.8-
lamini-lm-a-diverse-herd-of-distilled-models67.569.3
first-train-to-generate-then-generate-to92.6-
q-bert-hessian-based-ultra-low-precision87.8-
combining-similarity-features-and-deep70.770.5
squeezebert-what-can-computer-vision-teach82.081.1
roberta-a-robustly-optimized-bert-pretraining-90.2
smart-robust-and-efficient-fine-tuning-for--
improving-language-understanding-by82.181.4
combining-similarity-features-and-deep71.472.2
big-bird-transformers-for-longer-sequences87.5-
lamini-lm-a-diverse-herd-of-distilled-models54.755.8
what-do-questions-exactly-ask-mfae-duplicate82.3181.43
Modell 5492.692.4
adversarial-self-attention-for-language88-
improving-multi-task-deep-neural-networks-via87.987.4
Modell 5782.181.4
fnet-mixing-tokens-with-fourier-transforms8888
bert-pre-training-of-deep-bidirectional86.785.9
not-all-layers-are-equally-as-important-every7878.8
albert-a-lite-bert-for-self-supervised91.3-
how-to-train-bert-with-an-academic-budget84.483.8
multi-task-deep-neural-networks-for-natural86.786.0
exploring-the-limits-of-transfer-learning89.9-
not-all-layers-are-equally-as-important-every8383.4
a-statistical-framework-for-low-bitwidth89.9-
19091035182.581.8