Natural Language Inference On Commitmentbank
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Accuracy |
---|---|
designing-effective-sparse-expert-models | 98 |
bloomberggpt-a-large-language-model-for | 44.64 |
bloomberggpt-a-large-language-model-for | 48.21 |
designing-effective-sparse-expert-models | 98.2 |
n-grammer-augmenting-transformers-with-latent-1 | 67.9 |
language-models-are-few-shot-learners | 75.6 |
palm-2-technical-report-1 | 82.1 |
bloomberggpt-a-large-language-model-for | 48.21 |
palm-2-technical-report-1 | 80.4 |
language-models-are-few-shot-learners | - |
palm-2-technical-report-1 | 87.5 |
exploring-the-limits-of-transfer-learning | 96.8 |
bloomberggpt-a-large-language-model-for | 53.57 |
exploring-the-limits-of-transfer-learning | 94.4 |
palm-scaling-language-modeling-with-pathways-1 | 100 |
toward-efficient-language-model-pretraining | 97.6 |
toward-efficient-language-model-pretraining | 99.2 |
alexatm-20b-few-shot-learning-using-a-large | 67.9 |
deberta-decoding-enhanced-bert-with | 97.2 |
exploring-the-limits-of-transfer-learning | 94 |