HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Langschwanzlernen
Long Tail Learning On Voc Mlt
Long Tail Learning On Voc Mlt
Metriken
Average mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average mAP
Paper Title
Repository
OLTR(ResNet-50)
71.02
Large-Scale Long-Tailed Recognition in an Open World
-
DB Focal(ResNet-50)
78.94
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
-
Focal Loss(ResNet-50)
73.88
Focal Loss for Dense Object Detection
-
PG Loss(ResNet-50)
80.37
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
-
RS(ResNet-50)
75.38
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
-
LTML(ResNet-50)
81.44
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
-
CLIP(ViT-B/16)
85.77
Learning Transferable Visual Models From Natural Language Supervision
-
LMPT(ResNet-50)
85.44
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
LMPT(ViT-B/16)
87.88
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
CB Focal(ResNet-50)
75.24
Class-Balanced Loss Based on Effective Number of Samples
-
LDAM(ResNet-50)
70.73
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
-
ML-GCN(ResNet-50)
68.92
Multi-Label Image Recognition with Graph Convolutional Networks
-
CLIP(ResNet-50)
84.30
Learning Transferable Visual Models From Natural Language Supervision
-
0 of 13 row(s) selected.
Previous
Next
Long Tail Learning On Voc Mlt | SOTA | HyperAI