HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Langschwanzlernen
Long Tail Learning On Coco Mlt
Long Tail Learning On Coco Mlt
Metriken
Average mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average mAP
Paper Title
Repository
DB Focal(ResNet-50)
53.55
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
-
PG Loss(ResNet-50)
54.43
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
-
LDAM(ResNet-50)
40.53
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
-
RS(ResNet-50)
46.97
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
-
ML-GCN(ResNet-50)
44.24
Multi-Label Image Recognition with Graph Convolutional Networks
-
Focal Loss(ResNet-50)
49.46
Focal Loss for Dense Object Detection
-
LMPT(ResNet-50)
58.97
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
OLTR(ResNet-50)
45.83
Large-Scale Long-Tailed Recognition in an Open World
-
LTML(ResNet-50)
56.90
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
-
CB Loss(ResNet-50)
49.06
Class-Balanced Loss Based on Effective Number of Samples
-
CLIP(ViT-B/16)
60.17
Learning Transferable Visual Models From Natural Language Supervision
-
CLIP(ResNet-50)
56.19
Learning Transferable Visual Models From Natural Language Supervision
-
LMPT(ViT-B/16)
66.19
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
-
0 of 13 row(s) selected.
Previous
Next
Long Tail Learning On Coco Mlt | SOTA | HyperAI