HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Langschwanzlernen
Long Tail Learning On Coco Mlt
Long Tail Learning On Coco Mlt
Metriken
Average mAP
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Average mAP
Paper Title
LMPT(ViT-B/16)
66.19
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
CLIP(ViT-B/16)
60.17
Learning Transferable Visual Models From Natural Language Supervision
LMPT(ResNet-50)
58.97
LMPT: Prompt Tuning with Class-Specific Embedding Loss for Long-tailed Multi-Label Visual Recognition
LTML(ResNet-50)
56.90
Long-Tailed Multi-Label Visual Recognition by Collaborative Training on Uniform and Re-Balanced Samplings
CLIP(ResNet-50)
56.19
Learning Transferable Visual Models From Natural Language Supervision
PG Loss(ResNet-50)
54.43
Probability Guided Loss for Long-Tailed Multi-Label Image Classification
DB Focal(ResNet-50)
53.55
Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets
Focal Loss(ResNet-50)
49.46
Focal Loss for Dense Object Detection
CB Loss(ResNet-50)
49.06
Class-Balanced Loss Based on Effective Number of Samples
RS(ResNet-50)
46.97
Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
OLTR(ResNet-50)
45.83
Large-Scale Long-Tailed Recognition in an Open World
ML-GCN(ResNet-50)
44.24
Multi-Label Image Recognition with Graph Convolutional Networks
LDAM(ResNet-50)
40.53
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
0 of 13 row(s) selected.
Previous
Next
Long Tail Learning On Coco Mlt | SOTA | HyperAI