HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Langschwanzlernen
Long Tail Learning On Cifar 100 Lt R 10
Long Tail Learning On Cifar 100 Lt R 10
Metriken
Error Rate
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Error Rate
Paper Title
CE-DRW-IC
41.4
Posterior Re-calibration for Imbalanced Datasets
LDAM-DRW
41.29
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
CDB-loss
41.26
Class-Wise Difficulty-Balanced Loss for Solving Class-Imbalance
smDRAGON
41.23
From Generalized zero-shot learning to long-tail with class descriptors
LDAM-DRW + SSP
41.09
Rethinking the Value of Labels for Improving Class-Imbalanced Learning
ELP
40.9
A Simple Episodic Linear Probe Improves Visual Recognition in the Wild
CBD+TailCalibX
38.87
Feature Generation for Long-tail Classification
UniMix+Bayias (ResNet-32)
38.75
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective
MetaSAug-LDAM
38.72
MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition
RIDE + CMO + Curvature Regularization
38.60
Predicting and Enhancing the Fairness of DNNs with the Curvature of Perceptual Manifolds
LADE
38.3
Disentangling Label Distribution for Long-tailed Visual Recognition
Hybrid-PSC
37.63
Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification
SMC
37.5
Supervised Contrastive Learning on Blended Images for Long-tailed Recognition
MiSLAS
36.8
Improving Calibration for Long-Tailed Recognition
DRO-LT
36.59
Distributional Robustness Loss for Long-tail Learning
TADE
36.4
Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition
LCReg
35.8
Long-tailed Recognition by Learning from Latent Categories
GLAG
35.5
Long-Tailed Classification with Gradual Balanced Loss and Adaptive Feature Generation
BCL+CUDA
35.4
CUDA: Curriculum of Data Augmentation for Long-Tailed Recognition
Difficulty-Net
34.78
Difficulty-Net: Learning to Predict Difficulty for Long-Tailed Recognition
0 of 31 row(s) selected.
Previous
Next
Long Tail Learning On Cifar 100 Lt R 10 | SOTA | HyperAI