HyperAI
HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
LIDAR-Semantische-Segmentierung
Lidar Semantic Segmentation On Paris Lille 3D
Lidar Semantic Segmentation On Paris Lille 3D
Metriken
mIOU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIOU
Paper Title
Repository
ConvPoint
0.759
ConvPoint: Continuous Convolutions for Point Cloud Processing
-
GeomGCNN
0.785
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
-
Feature Geometric Net (FG Net)
0.819
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
-
Paris-Lille-3D
0.31
Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification
-
ConvPoint_Keras
0.720
ConvPoint: Continuous Convolutions for Point Cloud Processing
-
FKAConv
0.827
FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
-
DA-supervised
0.638
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
KPConv deform
0.759
KPConv: Flexible and Deformable Convolution for Point Clouds
-
CLOUDSPAM
0.738
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
0 of 9 row(s) selected.
Previous
Next
Lidar Semantic Segmentation On Paris Lille 3D | SOTA | HyperAI