HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
LIDAR-Semantische-Segmentierung
Lidar Semantic Segmentation On Paris Lille 3D
Lidar Semantic Segmentation On Paris Lille 3D
Metriken
mIOU
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mIOU
Paper Title
FKAConv
0.827
FKAConv: Feature-Kernel Alignment for Point Cloud Convolution
Feature Geometric Net (FG Net)
0.819
FG-Net: Fast Large-Scale LiDAR Point Clouds Understanding Network Leveraging Correlated Feature Mining and Geometric-Aware Modelling
GeomGCNN
0.785
Exploiting Local Geometry for Feature and Graph Construction for Better 3D Point Cloud Processing with Graph Neural Networks
ConvPoint
0.759
ConvPoint: Continuous Convolutions for Point Cloud Processing
KPConv deform
0.759
KPConv: Flexible and Deformable Convolution for Point Clouds
CLOUDSPAM
0.738
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
ConvPoint_Keras
0.720
ConvPoint: Continuous Convolutions for Point Cloud Processing
DA-supervised
0.638
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation and Pre-Training Using Aggregated Point Clouds and MoCo
Paris-Lille-3D
0.31
Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification
0 of 9 row(s) selected.
Previous
Next