HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Lesionensegmentierung
Lesion Segmentation On Isic 2018
Lesion Segmentation On Isic 2018
Metriken
mean Dice
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mean Dice
Paper Title
Polar Res-U-Net++
0.9253
Training on Polar Image Transformations Improves Biomedical Image Segmentation
DuAT
0.923
DuAT: Dual-Aggregation Transformer Network for Medical Image Segmentation
ProMISe
0.921
ProMISe: Promptable Medical Image Segmentation using SAM
RMSM UNet + DF-RAM +EF-RAM
0.9152
Automated skin lesion segmentation using multi-scale feature extraction scheme and dual-attention mechanism
BAT
0.912
Boundary-aware Transformers for Skin Lesion Segmentation
MobileUNETR
0.9074
MobileUNETR: A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation
DermoSegDiff-A
0.9005
DermoSegDiff: A Boundary-aware Segmentation Diffusion Model for Skin Lesion Delineation
DoubleU-Net
0.8962
DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation
MCGU-Net
0.895
Multi-level Context Gating of Embedded Collective Knowledge for Medical Image Segmentation
MSRF-Net
0.8813
MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation
Attn U-Net + Multi-Input + FTL
0.856
A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation
AIM++ (256x256, 1.5m parameters, 10% labeled data, no pretraining)
0.85
Inconsistency Masks: Removing the Uncertainty from Input-Pseudo-Label Pairs
BCDU-net
0.847
Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
U-Net + FTL
0.829
A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation
Attn U-Net + DL
0.806
A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation
BCDU-Net (d=3)
-
Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions
0 of 16 row(s) selected.
Previous
Next