HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Lane Detection
Lane Detection On Tusimple
Lane Detection On Tusimple
Metriken
Accuracy
F1 score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
F1 score
Paper Title
Repository
LaneATT (ResNet-18)
95.57%
96.71
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
CLRNet(ResNet-101)
-
97.62
CLRNet: Cross Layer Refinement Network for Lane Detection
BézierLaneNet (ResNet-34)
95.65%
-
Rethinking Efficient Lane Detection via Curve Modeling
EL-GAN
96.40%
96.26
EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection
-
BézierLaneNet (ResNet-18)
95.41%
-
Rethinking Efficient Lane Detection via Curve Modeling
ENet-Label
96.29%
95.23
Agnostic Lane Detection
-
LaneATT (ResNet-122)
96.10%
96.06
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
Pairwise pixel supervision + FCN
96.50%
94.31
Learning to Cluster for Proposal-Free Instance Segmentation
Eigenlanes (ResNet-18)
95.62%
-
Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes
-
R-34-E2E
96.22%
96.58
End-to-End Lane Marker Detection via Row-wise Classification
CondLaneNet-M(ResNet-34)
95.37%
96.98
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution
CANet-L(ResNet101)
96.76%
97.77
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
LaneAF
95.64%
96.49
LaneAF: Robust Multi-Lane Detection with Affinity Fields
SCNN_UNet_Attention_PL*
98.38
-
Robust Lane Detection through Self Pre-training with Masked Sequential Autoencoders and Fine-tuning with Customized PolyLoss
-
FOLOLane(ERFNet)
96.92
-
Focus on Local: Detecting Lane Marker from Bottom Up via Key Point
-
End-to-end ERFNet
95.24%
90.82
Lane Detection and Classification using Cascaded CNNs
ERFNet
94.5%
-
-
-
GANet(ResNet-18)
-
97.68
A Keypoint-based Global Association Network for Lane Detection
CLLD
96.82
-
Contrastive Learning for Lane Detection via cross-similarity
CANet-S
96.56%
97.51
CANet: Curved Guide Line Network with Adaptive Decoder for Lane Detection
-
0 of 41 row(s) selected.
Previous
Next