HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Keypoint Detection
Keypoint Detection On Coco Test Dev
Keypoint Detection On Coco Test Dev
Metriken
AP
APL
APM
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AP
APL
APM
Paper Title
Repository
OpenPifPaf
70.9
76.8
67.1
OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association
G-RMI
-
70.0
62.3
Towards Accurate Multi-person Pose Estimation in the Wild
-
Simple Base
-
80.0
70.3
Simple Baselines for Human Pose Estimation and Tracking
CPN
-
77.2
68.7
Cascaded Pyramid Network for Multi-Person Pose Estimation
HRNet
-
81.5
71.9
Deep High-Resolution Representation Learning for Human Pose Estimation
Mask R-CNN
-
71.4
57.8
Mask R-CNN
AlphaPose
-
81.5
-
RMPE: Regional Multi-person Pose Estimation
Simple Pose
68.1
70.5
66.8
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation
DirectPose (ResNet-101)
64.8
71.5
60.4
DirectPose: Direct End-to-End Multi-Person Pose Estimation
Simple Base+*
-
82.7
73.0
Simple Baselines for Human Pose Estimation and Tracking
CPN+
-
78.1
69.5
Cascaded Pyramid Network for Multi-Person Pose Estimation
MSPN
76.1
81.5
72.3
Rethinking on Multi-Stage Networks for Human Pose Estimation
CMU Pose
-
68.2
57.1
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
HRNet*
-
83.1
73.4
Deep High-Resolution Representation Learning for Human Pose Estimation
AE
-
72.6
60.6
Associative Embedding: End-to-End Learning for Joint Detection and Grouping
PifPaf (single-scale)
66.4
72.1
62.6
PifPaf: Composite Fields for Human Pose Estimation
0 of 16 row(s) selected.
Previous
Next