Image Super Resolution On Bsd100 4X Upscaling
Metriken
PSNR
SSIM
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | PSNR | SSIM |
---|---|---|
activating-more-pixels-in-image-super | 28.05 | 0.7534 |
lightweight-and-efficient-image-super | 27.57 | 0.7353 |
a-fully-progressive-approach-to-single-image | 27.79 | - |
drct-saving-image-super-resolution-away-from | 28.16 | 0.7577 |
structure-preserving-super-resolution-with | 25.505 | 0.6576 |
zero-shot-super-resolution-using-deep | 27.12 | 0.7211 |
photo-realistic-single-image-super-resolution | 25.16 | 0.6688 |
image-super-resolution-with-cross-scale-non | 27.8 | 0.7439 |
beyond-deep-residual-learning-for-image | 27.66 | 0.7380 |
photo-realistic-single-image-super-resolution | 27.58 | 0.762 |
drct-saving-image-super-resolution-away-from | 28.06 | 0.7533 |
non-local-recurrent-network-for-image | 27.48 | 0.7306 |
lightweight-image-super-resolution-with-1 | 27.56 | - |
one-to-many-approach-for-improving-super | - | - |
residual-dense-network-for-image-super | 27.72 | 0.7419 |
channel-partitioned-windowed-attention-and | 28.06 | 0.7532 |
progressive-perception-oriented-network-for | 27.83 | - |
gated-multiple-feedback-network-for-image | 27.74 | 0.7421 |
wavemixsr-v2-enhancing-super-resolution-with | 27.87 | 0.764 |
image-super-resolution-via-rl-csc-when | 27.44 | 0.7302 |
auto-encoded-supervision-for-perceptual-image | 25.93 | 0.6813 |
single-image-super-resolution-via-a-holistic | 27.85 | 0.7454 |
enhancenet-single-image-super-resolution | 27.50 | 0.7326 |
photo-realistic-single-image-super-resolution | 25.94 | 0.6935 |
a-framework-for-real-time-object-detection | 27.76 | 0.7441 |
multi-level-wavelet-cnn-for-image-restoration | 27.62 | 0.7355 |
feedback-network-for-image-super-resolution | 27.72 | 0.7409 |
flexible-style-image-super-resolution-using | 24.77 | 0.6817 |
local-texture-estimator-for-implicit | 27.86 | - |
channel-partitioned-windowed-attention-and | 28.04 | 0.7527 |
real-time-single-image-and-video-super | 27.02 | 0.7442 |
densely-residual-laplacian-super-resolution | 27.87 | 0.7453 |
flexible-style-image-super-resolution-using | 26.38 | 0.738 |
second-order-attention-network-for-single | 27.86 | 0.7457 |
joint-maximum-purity-forest-with-application | 26.87 | - |
recovering-realistic-texture-in-image-super | 25.33 | 0.651 |
sesr-single-image-super-resolution-with | 27.42 | 0.737 |
image-super-resolution-using-very-deep | 27.77 | 0.7436 |
image-restoration-using-very-deep | 27.40 | 0.7290 |
image-restoration-using-deep-regulated | 27.21 | - |
enhanced-deep-residual-networks-for-single | 27.71 | 0.7420 |
hierarchical-back-projection-network-for | 27.77 | 0.743 |
image-super-resolution-using-deep | 26.9 | 0.7101 |
image-super-resolution-via-attention-based | 27.82 | 0.743 |
learning-a-single-convolutional-super | 27.49 | 0.734 |
edge-informed-single-image-super-resolution | 24.25 | 0.851 |
photo-realistic-single-image-super-resolution | 25.02 | 0.6606 |
beyond-a-gaussian-denoiser-residual-learning | 27.29 | 0.7253 |
ram-residual-attention-module-for-single | 27.56 | 0.7350 |
hierarchical-information-flow-for-generalized | 28.13 | 0.7622 |
image-super-resolution-via-dual-state | 27.25 | 0.724 |
deep-laplacian-pyramid-networks-for-fast-and | 27.32 | 0.728 |
seven-ways-to-improve-example-based-single | 27.16 | - |
deeply-recursive-convolutional-network-for | 27.21 | 0.7493 |
image-restoration-using-convolutional-auto | 27.4 | 0.729 |
hmanet-hybrid-multi-axis-aggregation-network | 28.13 | 0.7562 |
perception-oriented-single-image-super | 24.87 | 0.6869 |
memnet-a-persistent-memory-network-for-image | 27.40 | 0.7281 |
swinfir-revisiting-the-swinir-with-fast | 28.07 | - |
lightweight-feature-fusion-network-for-single | 27.42 | - |
esrgan-enhanced-super-resolution-generative | 27.85 | 0.7455 |
wavemixsr-a-resource-efficient-neural-network | - | 0.7605 |
progressive-perception-oriented-network-for | - | 0.7515 |
deep-back-projection-networks-for-super | 27.72 | 0.740 |
image-super-resolution-via-feature-augmented | 26.91 | - |
activating-more-pixels-in-image-super | 28.09 | 0.7551 |
deep-learning-based-image-super-resolution | 26.5707 | 0.6900 |
fast-accurate-and-lightweight-super-1 | 27.58 | 0.7349 |
fast-and-accurate-single-image-super | 27.41 | 0.7297 |
swinfir-revisiting-the-swinir-with-fast | 28.03 | 0.7520 |
perceptual-losses-for-real-time-style | 24.95 | 0.6317 |